#### Do's and Dont's of Cytology

### Do's and Don'ts for Sample Collection and Slide Preparation



### The Obvious

- Sood profit center
- No additional equipment needed
- Relatively safe procedure
- Allows rapid identification of pathology in lumps, bumps, fluids and tissues from internal organs



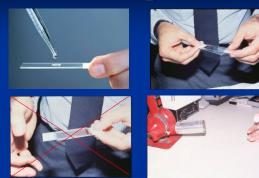
### The Not So Obvious

- Allows evaluation of tissues that would → otherwise require much more invasion
- Allows evaluation of material that cannot → be evaluated any other way

Internal organs and internal masses

Fluids: Effusions, urine, synovial fluid, spinal <u>fluid</u>

### Fluids


- Never send a fluid to the lab without preparing slides!
  - Cells degenerate!
  - Exception: Spinal fluid mixed <sup>1</sup>/<sub>2</sub> and <sup>1</sup>/<sub>2</sub> with hetastarch (Ship on cold pack)



# Effusions

- Total Protein with refractometer
- Cell counts: hemocytometer or your automated analyzer (Dr. Dennis DeNicola)
- Solution State Making a smear
  - So a direct smear for cellularity
  - Spin down fluid and make a smear of the pellet

# **Slide Preparation**

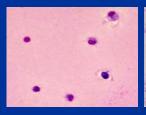


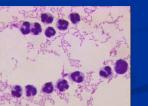
# Synovial fluid

Only way to distinguish inflammatory vs. non-inflammatory joint disease!

# **Slide Preparation**





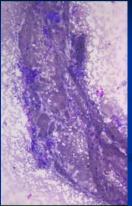

This is a must!

# Synovial fluid

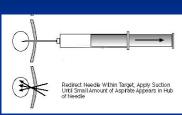
Only way to distinguish inflammatory vs. non-inflammatory joint disease!






Tap more than one joint!!

#### **Respiratory Samples**


- Sendoscopy and bronchial brush
- Tracheal washings
  - Son't just smear the fluid
  - Pick out particles of mucus
    - Capillary pick up
    - Silter fluid on coffee filter
    - Pick out mucus plugs with forceps
    - Smear on slide

#### **Sample Collection from Tissues**

- Use the woodpecker technique with or without an attached syringe
  - If you use a syringe, have the plunger extended
  - Without a syringe, have the syringe ready with plunger extended before collection
- Must collect the sample and prepare the slide without delay!
  - Solution of the second seco



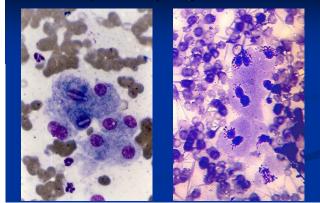
# Woodpecker Technique














# Dry the Slides!!!



# **Delayed Drying Artifact!**



# Cytology / Hematology Stains

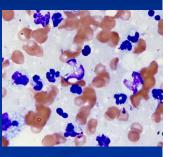
- Three-step staining set
   Diff Quik®
  - Numerous other brands
- Aqua fixative 2 mins.
- Red stain 1 min.
- Blue stain 1 min.



#### Organs / Masses: Common Lesions

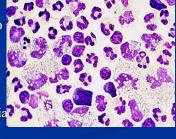
- Substant States Stat
- Greatly increases utility of cytology in practice
  - Lung
  - Liver
  - Spleen
  - Pancreas
  - GI tract
  - Prostate
  - Bladder

# Interpretation (Pondering the Material)




# 5 Categories of Tissue Lesions

- Inflammatory lesion neutrophils
- Systic lesion amorphous material
- Hemorrhagic lesion phagocytized RBCs
- Neoplastic lesion monomorphic cell population
- Mixed cell population both inflammatory and noninflammatory cells


# **Inflammatory Lesions**

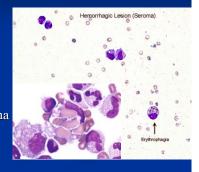
- Neutrophils above those expected from blood contamination
- Three types of inflammation
  - Purulent inflammation
  - Pyogranulomatous inflammation
  - Eosinophilic inflammation



#### Pyogranulomatous Inflammation

- Greater than 15% to 40% macrophages
  - Fungal infections
  - Foreign bodies
  - Panniculitis
  - Intracellular bacteria
    - Mycobacteria spp.
    - o Bartonella spp.



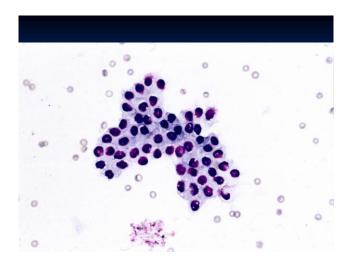

# **Cyst Formation**

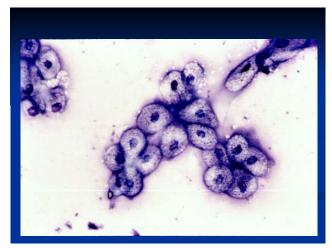
- Follicular cyst (EIC)
- Apocrine cyst
- Sebaceous cyst



# **Hemorrhagic Lesion**

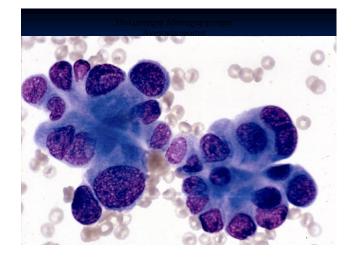
- Hematoma
- Seroma
- Seoplasia
  - Hemangioma
     Hemangiosarcoma

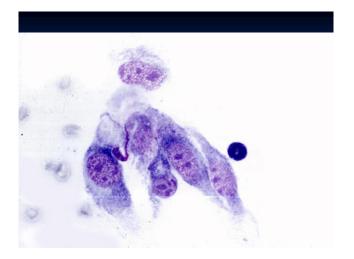


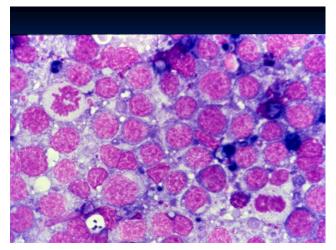


# Neoplasia

- Monomorphic population of cells
- Senign vs malignant

#### Benign Neoplasia / Hyperplasia


- Uniformity in nuclear and cytoplasmic size
- © Uniformity in N:C ratio
- Consistent size, shape, and number of nucleoli




# Characteristics of Malignancy

- Anisokaryosis
- High or variable N:C ratio
- Sariable nucleoli
- © Coarse, clumped chromatin
- Increased Mitotic activity
- Pleomorphism
- Solution Nuclear molding
- Solution Solution





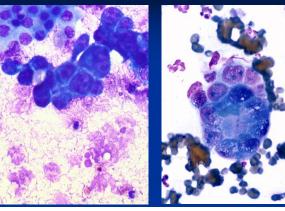


# **Special Considerations**

- The cell population should contain 3 or more of the nuclear criteria for malignancy
- Presence or absence of inflammation
- Predicting biological behavior
  - Location of lesion
  - Specific tumor types
  - To be discussed later

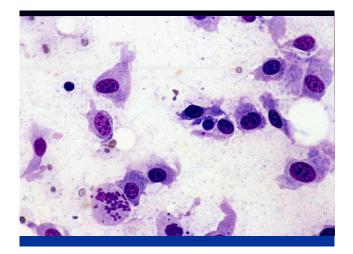
# **Special Considerations**

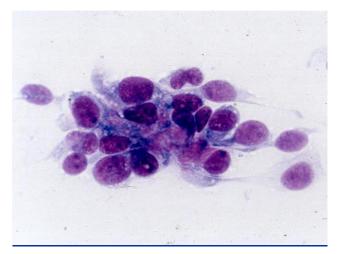
- The cell population should contain 3 or more of the nuclear criteria for malignancy
- Presence or absence of inflammation
- Predicting biological behavior
  - Location of lesion
  - Specific tumor types
  - To be discussed later


# Categories of Neoplasia

- Sepithelial
- Mesenchymal
- Sound cell
- Neuroendocrine

# **Epithelial Tumors**


- Substitution of the second second
- Cells tend to occur in clumps or clusters
- Distinct cytoplasmic borders
- Cytoplasmic membranes adherent to each other displaying tight cell junctions


#### **Pulmonary Masses**

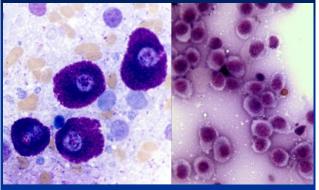


# **Mesenchymal Tumors**

- Solution May not exfoliate well?
- Sells more individually arranged
- Polygonal to wispy, spindle-shaped cytoplasm



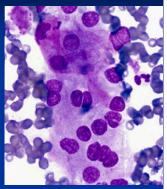



# **Round Cell Tumors**

- Substant Straight Straight
- Individually arranged, polygonal to round cells
- Solution Strategy Distinct cytoplasmic borders
- Most malignant ones metastasize via lymphatics

# **Round Cell Tumors**

- Section 2 Sec
- Substant Strategy Lymphoma
- Mast cell tumor
- STVT S
- Selasmacytoma
- Melanoma


# **Round Cells**

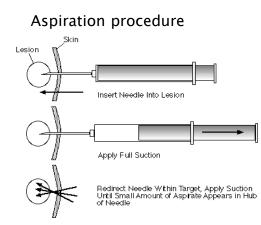


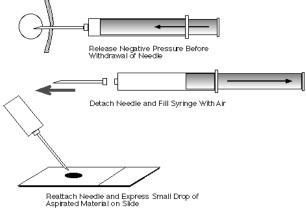
# **Neuroendocrine Tumors**

 Tumors of the endocrine and chemoreceptor glands

- Thyroid, parathyroid, endocrine pancreas, adrenal, carotid body and aortic body
- Appears cytologically as free nuclei in background of cytoplasm







#### Cytology Evaluation of Lymph Nodes

# The Cytological Evaluation of



- 22 gauge needle or butterfly catheter, and a 6 cc or 12 cc syringe
- Insert toward periphery of the node
- + / negative pressure





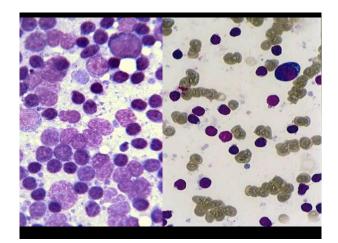




# **Cytologic Stains**

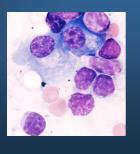
 Three-step staining set
 Diff Quik®




# Cytologic Interpretation

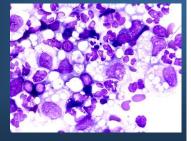
- Normal
- Reactive lymphoid hyperplasia
- Inflammatory
- Lymphoma
- Metastatic disease • Could be normal size




# Normal Lymph Node

- 75% 95% small, welldifferentiated lymphocytes
  - Dark dense chromatin
  - Nucleus 1 1.5 times size of erythrocyte
- Low numbers of intermediate lymphocytes and rare lymphoblasts
- Rare macrophages and plasma cells

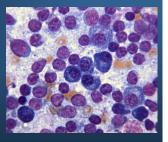


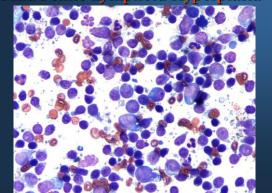

#### Plasma cells

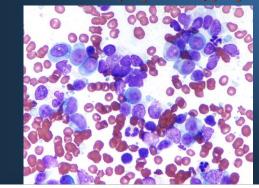
- Abundant basophilic cytoplasm
- Perinuclear clear zone (Golgi region)
- Eccentric nuclei with condensed chromatin



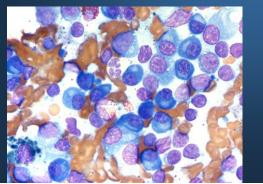
#### Other cells


- Neutrophils
- Macrophages
- Mast cells
- Eosinophils





#### **Reactive Lymphoid Hyperplasia**

- Reactivity is usually due to antigenic stimulation of the draining areas • infection, inflammation, neoplasia, etc.
- If several lymph nodes are reactive, systemic disease should considered
  - systemic infection • Protozoal, fungal, rickettsial, bacterial, viral,
  - autoimmune disease
    - SLE, polyarthritis, polymyositis, etc.

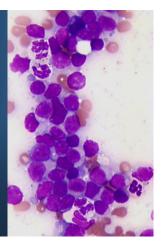

- Small lymphocytes predominate
- Increased numbers of intermediate lymphocytes and lymphoblasts
- Increased numbers of plasma cells (dog) Increased blast cells in the
- cat
- +/- low numbers of neutrophils, macrophages or mast cells

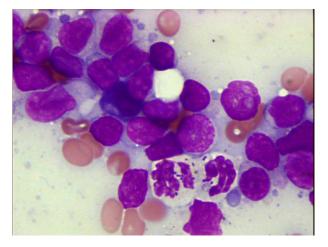


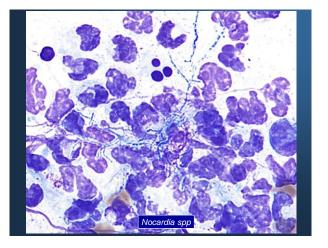




# Marked Canine Lymphoid Hyperplasia

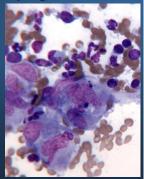


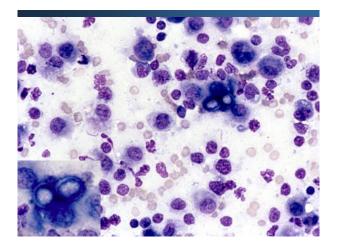


### Lymphadenitis


- Inflammation within the lymph node
- Various types
  - Purulent lymphadenitis
  - Pyogranulomatous lymphadenitis
  - Eosinophilic lymphadenitis

#### Purulent Lymphadeniti

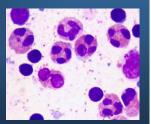
- Neutrophilic inflammation
  - Usually bacterial infection within the node or in the surrounding tissues
  - Submandibular lymph nodes






Many macrophages ± neutrophils


- Fungal pythiosis, blastomycosis (etc.) Bacterial Bartonella spp. mycobacteria, Nocardia, Actinomyces
   Protozoal cytauxzoonosis, toxoplasmosis, leishmaniasis
- Protothecosis
- Idiopathic granulomatous lymphadenitis (canine)
- Chronic inflammation
  Neoplasia





- Increased eosinophils with some neutrophils and macrophages

  - Allergic dermatitis
    Hypersensitivity reactions
  - Eosinophilic granulomas
  - Parasitic infection
  - Eosinophilic gastroenteritis / Feline Gastrointestinal Eosinophilic Sclerosing Fibroplasia
  - Hypereosinophilic syndrome / granulomas (Cats, Rottweilers, Siberian Huskies)
  - Mast cell tumors (Canine)
  - Rarely, lymphoma or carcinoma



#### Lymphoma

- Population of neoplastic lymphocytes that originates in peripheral lymph nodes or tissues
- Easy to diagnose cytologically in the canine lymph node
- Difficult to diagnose cytologically in the feline lymph node
- Lymphoid Leukemia by definition, originates in the bone marrow

#### Lymphoma in Dogs

- Most common hematopoietic neoplasm
- Most dogs have multicentric form
- Non-painful, marked generalized lymphadenopathy



#### Lymphoma in Dogs

- Typically middleaged dogs
- Higher incidence in Golden retrievers, boxers, Scottish terriers, German shepherds, Basset hounds, Bernese Mountain dogs, and others



#### Lymphoma in Dogs: Tendencies

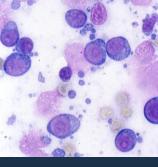
- May involve B or T lymphocytes
- Breed differences
  - Shih Tzus, boxers, and Siberian Huskies more likely T-cell origin
  - Cocker Spaniel, Doberman pinscher, Basset Hound, German shephard, Rottweilers more likely B-cell origin

#### Lymphoma in Dogs

- Some use the terms high grade (large / blast cells) and low grade lymphoma (small lymphocytes)
- Intermediate grade
- There are classification systems with specific criteria

#### Lymphoma Classification (Dogs)

- Diffuse large B-cell lymphoma (52%)
- Peripheral T cell lymphoma, not otherwise specified (15%)
- Nodal marginal zone lymphoma (8%)
  - Specific type of B-cell lymphoma that develops in the marginal area of lymph nodes of dogs
  - Indolent lymphoma low mitotic rate and slow clinical progression (some cases can be aggressive)
- Other T or B cell lymphomas (13%)
- T zone lymphoma (4%)
- T-cell lymphoblastic lymphoma (3%)


# Canine Lymphoma

- Lymphoma often occurs in peripheral lymphoid tissue (multicentric)
- Often is a large cell variant
- Lymphoblasts predominate, typically representing 50% - 90% of the cell population
- Increased mitotic figures
  Large number of
- Large number of lymphglandular bodies

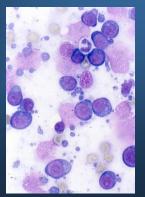


#### Canine Diffuse Large B-cell Lymphoma

- Lymphoblasts usually predominate
  - Nuclei are 2-5 times the size of a RBC
  - Chromatin pattern is diffuse
  - Cytoplasm is abundant and deeply basophilic
    Nucleoli can be identified
- Lymphoglandular bodies are common
- Increased numbers of mitotic figures may be seen

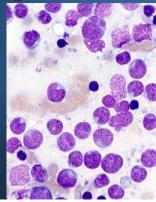


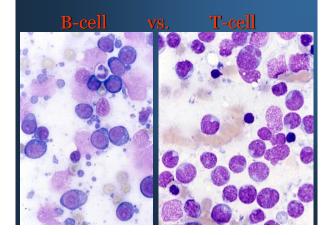
#### Immunophenotyping


- Most accurate way to determine cell type involved
   (B-cell vs. T-cell)
  - Prognostic and therapeutic information
  - Surface protein markers
    - Cluster differentiation (CD) CD3, CD4, CD8 = T-cell
      CD21, CD79a = B-cell
  - Technically, does not identify population as neoplastic
- Must first diagnose lymphoma cytologically
- Morphological characteristics of the neoplastic lymphocytes may also indicate cell type
   Outplogical trains of action lymphocytes
  - Cytological typing of canine lymphomas

#### PCR Analysis of Lymphoid Tissue

- PCR for Antigen Receptor Rearrangements
   (PARR) (DNA analysis)
- Used to help identify a population as neoplastic
- Tests for clonality in antibody receptor and Tcell antigen receptor
- Not for typing as B or T cells because some Bs have T cell antigen rearrangements etc.
- Good for canine and feline small cell lymphoa, (new primer development >80% in feline
- Clinical immunology laboratory at CSU
   970-491-1170

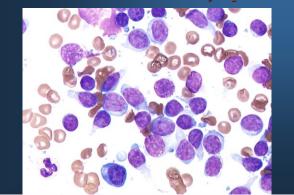

# Cytological Typing: B-cell Lymphoma


- Plasmacytoid appearance with eccentrically located nuclei and a perinuclear clear zone
- Single, prominent, centrally located nucleoli
- Also called Immunoblastic Lymphoma



#### Cytological Typing: T-cell Lymphoma

- Nuclei are sometimes cleaved or convoluted
- Nucleoli are often indistinct or absent
- Often associated with hypercalcemia
- Also called Lymphoblastic Lymphoma






#### T Zone Lymphoma (4%)

- Expansion of small to intermediate lymphocytes (30-90% of cells in the LN); may resemble lymphoid hyperplasia
- Round nucleus with coarse chromatin and rare small, faint nucleoli
- Moderately expanded pale blue cytoplasm with a wide-base pseudopod
- CD45-, variable T-cell antigen expression

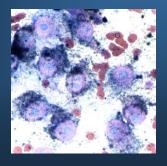
#### Also Called Hand-Mirror Lymphoma



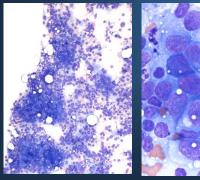
#### **Metastatic** Disease

- Homogeneous
   population of cells not
   normally seen in a
   lymph node
- Size of node not a factor
- Confirmatory only if metastasis is found
   Early infiltration not
- detected cytologicallyLymphoid population if
- present may appear reactive



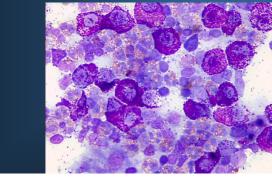

#### Tumors that Metastasize via Lymphatics

- Carcinomas
- Round cell tumors (lymphatics +/- blood)
- Endocrine tumors (blood or lymphatics)
- Most Sarcomas locally invasive
- Osteosarcoma and hemangiosarcoma – blood
- Histiocytic sarcomas (blood or lymphatics)

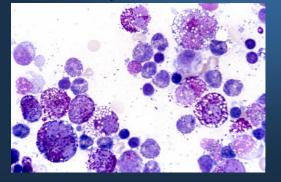



#### Metastatic neoplasia

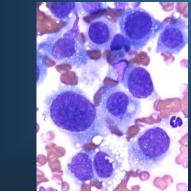
- Mast cell tumors
- Malignant melanoma
- Epithelial neoplasia
- Mesenchymal neoplasia




#### Metastatic Carcinoma







#### Metastatic Mast Cell Tumor (welldifferentiated)



# Metastatic Mast Cell Tumor (mod. differentiation)



# Metastatic Histiocytic Sarcoma





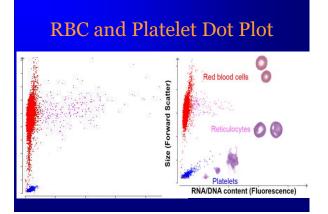
# Cytology Case Challenges: The Splenic Mass

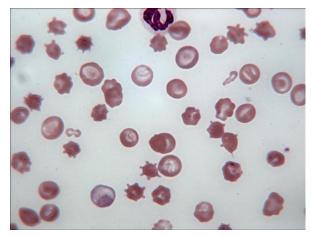
#### Cytology Case Challenge: The Splenic Mass

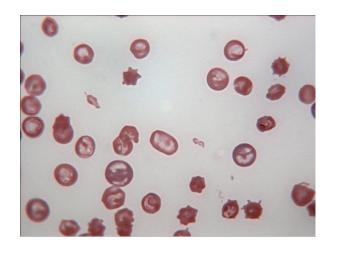




# **Physical Exam Findings**


- Pale mucus membranes, tachycardia (120 BPM)
- ◎ CRT prolonged @ 4 sec.
- Abdominal distension
  - Effusion and/or mass was difficult to determine on abdominal palpation
- PCV 19%
- TPP 5.4
- Plan: CBC


| CB | CF | lesu | lts |
|----|----|------|-----|
| 1  |    | -    |     |


| WBC   | 19.1  | $(6.0 - 17.0) \ge 10^3$  | RBC  | 2.51  | $(5.4 - 7.8) \ge 10^6$        |
|-------|-------|--------------------------|------|-------|-------------------------------|
| Neuts | 15.2  | $(3.0 - 11.5) \ge 10^3$  | HGB  | 6.8   | (13.0 – 19.0) g/dL            |
| Bands | 0.900 | $(0.0 - 0.3) \ge 10^3$   | HCT  | 18.2  | (37.0 – 54.0) %               |
| Lym.  | 0.700 | $(1.0 - 4.8) \ge 10^3$   | MCV  | 76.2  | (66 – 75) fL                  |
| Mon.  | 2.3   | $(0.15 - 1.35) \ge 10^3$ | MCHC | 236.3 | (34.0 – 36.0) g/dL            |
| Eos.  | 0.0   | $(0.1 - 1.25) \ge 10^3$  | Plts | 25.0  | (150 – 430) x 10 <sup>3</sup> |
|       |       |                          |      |       |                               |

Reticulocyte count (6%) =  $150,600 / \mu l$  (>80,000 = regenerative)

Blood film evaluation







# Findings from Blood Film Evaluation

- Regenerative anemia (polychromasia)
- Poikilocytosis
  - Acanthocytes
  - Schistocytes
- Thrombocytopenia

## Schistocytes

- Hallmark of fragmentation hemolysis
- Fragmentation of cells passing through tortuous or abnormal vessels

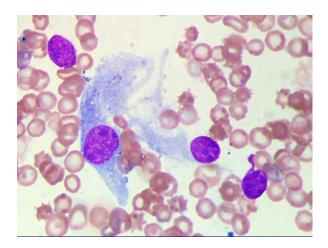
DIC

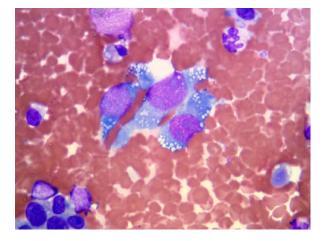
- Neoplasia (HSA, Thyroid ACA)
- 50% of dogs with Splenic HSA
- Vasculitis
- Thromboembolism (Cushing=s, HWD)
- Caval Syndrome
- Glomerulonephritis
- Increased fragility of erythrocytes
  - severe iron deficiency anemia

### Abdominal Ultrasound

- Free abdominal fluid
- Large mass in cranial abdomen (14 cm)
   Cavitated with mixed echogenicity
  - Appeared to be associated with the spleen

#### CBC findings that support Dx of HSA


- Anemia (80%) of dogs
   Hemolysis and/or hemorrhage
- Thrombocytopenia (75%) of dogs
  - DIC or microangiopathic disease in fibrin filled neoplastic vessels
- Schistocyte formation (50%) of dogs
  - Hallmark of red cell fragmentation
  - DIC or microangiopathic disease in fibrin filled neoplastic vessels


#### Hemostasis Profile

- PT and APTT normal
- FDPs negative
- D-dimers (ref. range < 250 ng/ml)</p>
  - Not useful in this case due to hemoabdomen
  - Can result in d-dimer levels > 1,000 ng/ml in dogs without evidence of TE disease

### Fine-needle Aspiration of Splenic Mass

- Potential for definitive, presurgical diagnosis
- Potential for complications
  - Seeding the abdomen with tumor cells
  - Hemorrhage
  - Dog is already bleeding likely due to rupture of neoplastic vessels, not DIC





#### **Plan for Sadie**

- Owners elected surgery and chemo if possible
- Sadie was transfused (PCV 26%)
- Surgery was performed and a 14 cm x 16 cm mass was identified in the spleen
- Multiple, red-purple, raised nodules were present in all lobes of the liver
- The spleen and biopsies taken from the hepatic masses were submitted for histopathology
- Final Dx: hemangiosarcoma

#### Treatment

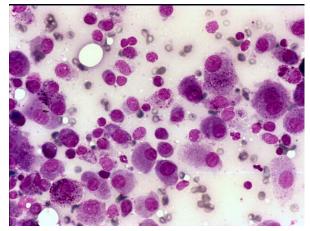
- Chemotherapy was initiated approximately 1 week post-op (once histopath confirmed a diagnosis) (PCV 35%)
- 21 day cycle of VAC
  - Vincristine 0.75 mg/m<sup>2</sup> BSA (IV) (Day 8 & 15)
  - Doxorubicin 30 mg/m<sup>2</sup> BSA (IV) (Day 1)
  - Cyclophosphamide 200 300 mg/m<sup>2</sup> BSA (PO) (Day 10)
- Sadie received 4 cycles of therapy

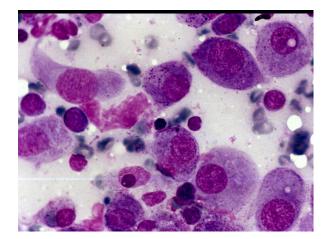
#### Prognosis

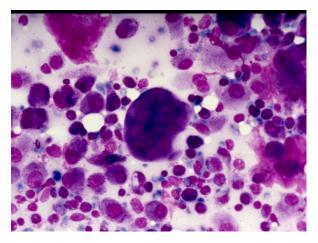
- Long-term prognosis extremely poor
- Death from exsanguination from rupture of metastatic site
- Surgery alone rarely curative with MST of 1 to 3 months
- Multi-drug chemotherapy MST 6 to 9 months

#### Sadie

- Sadie was found dead in her bed 9 months after splenic surgery
- Likely the result of ruptured metastatic lesion





# Patient: Toby


- 6 year old, intact, male German shepherd
- Acute onset of lameness
  - Right front leg

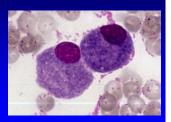


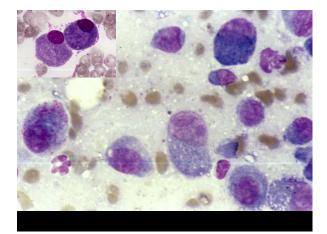


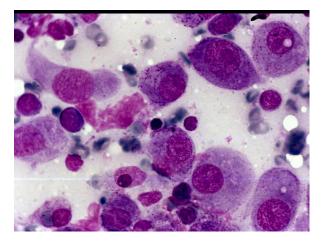










#### Osteosarcoma


- > Most common malignant bone tumor of the limbs
- > Appendicular forms typically in giant or large breed dogs
- > Uncommon in cats
- Site predilection for metaphyseal regions
  - > Away from elbow, toward the knee
    - Proximal humerus
    - Distal radius and ulnar
    - » Proximal tibia
    - » Distal femur

# Cytologic Features of Osteosarcomas

- May look like round cell tumor
- Large, oval to spindle-shaped cells > Individually arranged
- Discrete cytoplasmic borders
- > Eccentric nuclei
- > Multinucleated giant cells
- Dense, amorphous pink material
   > Osteoid









Use of Alkaline Phosphatase Staining to Differentiate Canine Osteosarcoma from Other Vimentin-positive Tumors

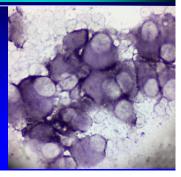
A. BARGER, R. GRACA, K. BAILEY, J. MESSICK, L.-P. DE LORIMIER, T. FAN, AND W. HOFFMANN Departments of Veterinary Pathology (AB, RG, KB, JM, WH) and Veterinary Clinical Medicine (LPD, TF), College of Veterinary Medicine, University of Illinois, Urbana, IL.

- > Sensitivity near 100% (rare to get false negative)
- Specificity 89%
  - > One of four chondrosarcomas were positive
  - > Malignant histiocytic sarcomas may be positive, seen clinically, not tested in original study
  - > Rottweilers and other predisposed breeds

### Staining for Alkaline **Phosphatase**

#### BCIP / NBT Liquid Substrate System

- ≻ Sigma: P Code 1002028038
- > B1911-100ml (~ \$80 USD)
- > Lasts 2 or more years (refrigerated)




#### Staining for Alkaline Phosphatase

- Place air-dried slide on flat surface (cardboard slide holder)
- > Apply a few drops of substrate
- > Incubate at room temp. for 10min. (1 hour if previously stained)
- > Rinse with tap water and air dry

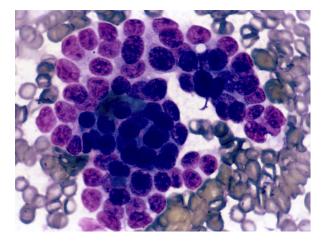
### Staining for Alkaline Phosphatase

- Place air-dried slide on flat surface (cardboard slide holder)
- > Apply a few drops of substrate
- > Incubate at room temp. for 10 min.
- > Rinse with tap water and air dry



#### Biological Behavior of **O**steosarcomas

- > Location of lesion and signalment of patient
- > Appendicular skeleton
  - > Rapid hematogenous spread > 90% have mets by time of Dx
  - Pulmonary > Median survival 2 - 4 months
- > Axial skeleton less aggressive > Mandibular OS: 1 year survival 71% > Small dogs (<15 kg) 60% affects axial skeleton
- ➢ Feline OS


  - ➤ Femur
  - Less aggressive, reduced incidence of metastasis
     Median survival time 4 5 years

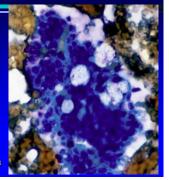


# Patient: Tangy

- > 10 year old, M/C DLH
- Swelling on left cheek
- > Physical exam
  - > Lobulated, pigmented mass caudal to the left commissure








#### **Basal Cell Tumor**

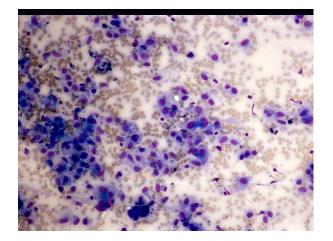
- > Benign epithelial tumor
- > Very common cutaneous tumor in dog and cat
- > Rare in other species
- > Site predilection for skin on head and neck > Also on legs in cats

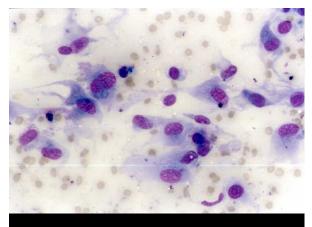
#### Cytologic Features of Basal Cell Tumors

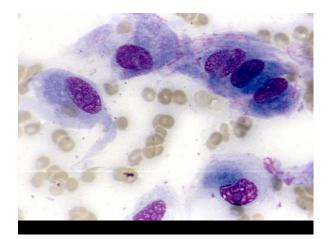
- Tightly adherent clumps of deeply basophilic epithelium
- > High N:C ratio
- > Mild to moderate anisokaryosis
- > Occasional nucleoli
- > Variable amounts of melanin pigment Especially in the cat
- Sebaceous differentiation

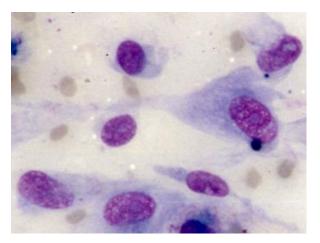


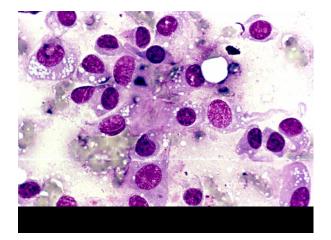
### Sebaceous Gland Adenomas


- > Common cutaneous tumor of dogs
- > Uncommon in other species
- > Sebaceous gland ACA rare
- > Site predilection for skin of head, neck and eyelids





- > 9 year old, male, Husky
- > Left rear leg lameness
- Physical exam findings
- Firm, large , swelling on caudal aspect of left thigh and perineal area
- > Attached to underlying
- > No bone involvement









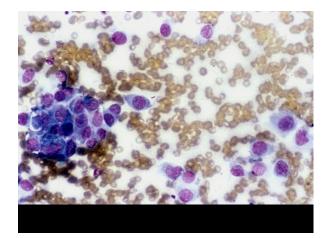


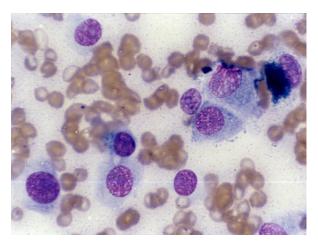



# Hemangiopericytoma

- ≻ Perivascular wall tumors
- Frequently reported mesenchymal neoplasm in the dog
- Site predilection for the extremities, especially lateral surface
- > Originates from vascular pericytes

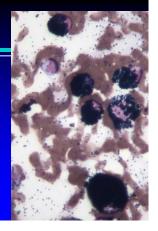
#### Characteristic Features of Hemangiopericytomas

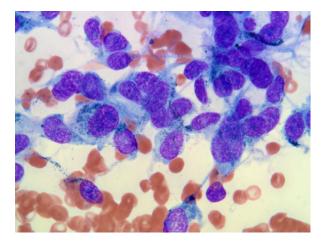

- > Extremely cellular aspirates
- Anaplastic mesenchymal cells with very wispy cytoplasm
- > Small, punctate cytoplasmic vacuoles
- > 1 or 2 prominent nucleoli
- > Cells branching off of capillaries
- > Locally very invasive
  - > Best chance for cure
- > Metastasis is rare




#### Patient: Sam

- > 9 year old, F/S, mix breed
- > Swelling on gum
- > Physical exam
  - > Mass surrounding lower right incisors






# Melanoma

- Round cell tumor of neuroectodermal origin
- Found cutaneously anywhere on the body
- Canine melanomas
   Site predilection for oral cavity and digits







# Cytologic Appearance of Melanomas

- > Epithelial-appearing and spindle-shaped forms
- Variable degrees of differentiation (pigmentation)
   Dark green to black, small granules
- Approximately 1/3 of oral melanomas lack pigment
   Amelanotic
  - > Pale cytoplasm with nuclear criteria for malignancy
  - > Suspected with oral tumor of undefined tissue of origin

# - Biological Behavior of Melanomas

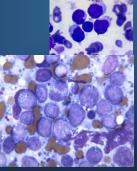
- Most well-differentiated cutaneous melanomas are benign
- Most oral (and digital) melanomas are malignant
   Rapid metastasis to regional nodes
- Feline melanomas
  - > Uncommon



# The Diagnosis of Feline Lymphoma: A Diagnostic Dillema

# The Diagnosis of Feline Lymphoma: A Diagnostic Dillema




# What is Lymphoma?

- "Clonal" proliferation of neoplastic lymphocytes that originates in peripheral lymph nodes or tissues
- Often easy to diagnose cytologically in the canine
- Difficult to diagnose cytologically in the feline



# Lymphoma: Variable biological behavior

- Different lymphocyte phenotypes (B, T, NK)
- Clonal
   proliferation at
   any stage of
   maturation



# Morphologic classification of lymphoma and prognosis

- Prognostic gastric vs. intestinal lymphoma in cats
- Treatment changes with subtype
- Morphology, immunophenotype (IPT), genetic features and anatomic location

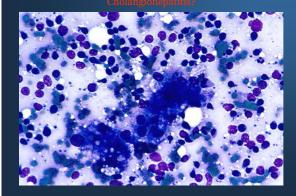
### Morphologic classification of lymphomas and prognosis: What do we know?

- What is all this fuss about??
- Isn't it **"B for Bad and T for Terrible**" when it comes to TREATMENT?
- Traditional thinking: Prognosis depends on the treatment. Wrong!
- Current evidence:
  PROGNOSIS depends on lymphoma type (100s)
  - (WHO) considering all factors previously discussed
- Need of SPECIFIC THERAPIES "Targeted"

# The Cytological Diagnosis of Feline Lymphoma

# A diagnostic dilemma!

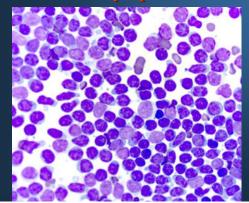
### Cats are so Weird!


- Most lymphomas in cats do not involve peripheral lymphadenopathy
   Internal organs
- Small cell lymphoma in internal organs
- Bizarre Distinctive peripheral lymph node hyperplasia (DPLH)
- Hodgkin's-like lymphoma



# Feline Hepatic Lymphoma

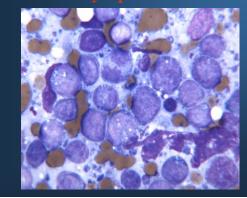
- May be composed of small, welldifferentiated lymphocytes
- Similar to those seen in cats with Lymphocytic / Plasmacytic cholangiohepatitis
- Distinguishing features
  - Signalment age, severity of hepatomegaly
  - Cytological appearance numbers and monomorphic appearance


### Lymphoma or Lymphocytic / Plasmacyti



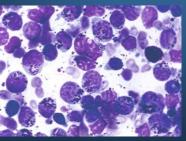
### Feline Intestinal Lymph

- Small cell, well-differentiated lymphomas are frequently observed
- GI Lymphoma is often seen in older cats
- Cellularity of the preparation, age of the cat and lack of lymphoid heterogeneity and plasma cell population aids in making the distinction
- Biopsy may be necessaryAspiration of mesenteric lymph

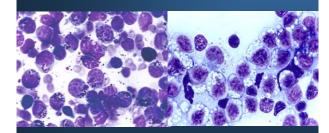

### **Mesenteric Lymph Node**



### Mesenteric Lymph Node




Gastric Lymphoma in a Cat




### Feline Large Granular Lymphoma

- Often involves the gastrointestinal tract
- Cytological diagnosis possible due to large population of granular lymphocytes



**Staining Properties of LGLs** 



Wrights-Giemsa

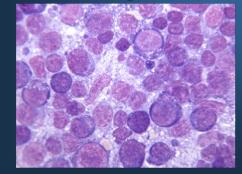
Diff-Quik®

# Peripheral Lymphadenopathy in Cats

- Difficult to diagnose lymphoma from a lymph node aspirate
  - Multicentric form, as seen in dogs, is unusual in cats
- o DPLH
- Hodgkin's-like Lymphoma

# Distinctive Peripheral Lymph Node Hyperplasia (DPLH)




- Distinctive peripheral lymph node hyperplasia
- Generally young cats (2 to 4 years old)
- Mimics multicentric lymphoma clinically, cytologically and histologically
- However, peripheral lymphadenopathy regresses in 1 to 17 weeks
- May be associated with underlying infection

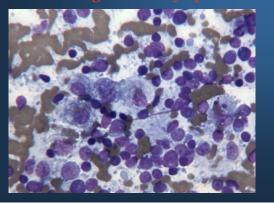
### DPLH

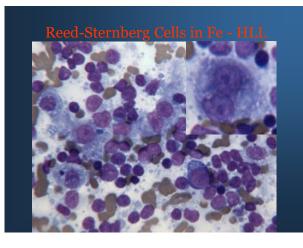
- See high numbers of lymphoblasts
- Lower numbers of small lymphocytes, intermediate lymphocytes and plasma cells
- Requires histological diagnosis



# DPLH in a Young Cat




# Feline Hodgkin's-like Lymphoma


- Resembles the condition in humans
- Most often seen in older cats
- Most animals present with:
  - A mass in the ventral cervical region
  - Submandibular LN enlargement and/or cervical / prescapular LN enlargement
- Difficult to diagnose cytologically, as only neoplastic cells comprise only 1-5% of cells in LN
- Reed-Sternberg Cells

# Feline Hodgkin's disease

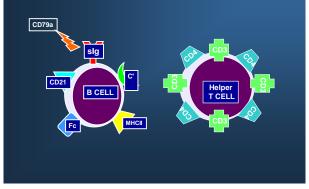
- Remaining cells are non-neoplastic lymphocytes, macrophages and granulocytes (neutrophils)
- Diagnosis is confirmed by histopathology several histological types exist
- Prognosis good as disease is generally less aggressive than non-Hodgkin's lymphoma
- Many cats survive months to years

#### Feline Hodgkin's-like Lymphoma



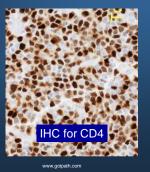


# Advanced Diagnostics Currently Available


- If it comes down to "PARR" ticular tests
- Don't choke on a hairball
- You just go with the "Flow"



### Immunophenotyping (Flow Cytometry)


- Most accurate way to determine cell type involved (B-cell vs. T-cell)
  - Prognostic and therapeutic information
  - Surface protein markers
    - Cluster differentiation (CD) CD3, CD4, CD8 = T-cell
  - CD 20, CD21, CD79a = B-cell
  - Technically, does not identify population as neoplastic
- Prevalence of specific subtypes may indicate lymphoma
- Can be done on blood or lymphocytes in solution
   Flow cytometry
- Histopath IHC

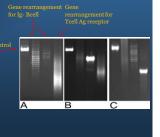
### Lymphocyte Surface Antigens



### Immunohistochemistry (IHC)

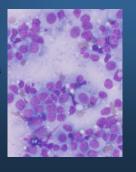
• Immunohistochemistry for T and B markers can be performed on histologic sections




# PCR Analysis of Lymphoid Tissue

- PCR for Antigen Receptor Rearrangements (PARR) (DNA analysis)
- Used to help identify a population as neoplastic
- Tests for clonality in antibody receptor and Tcell antigen receptor
- Good for canine, sensitivity 80% in feline ⊗
- Clinical immunology laboratory at CSU

• 970-491-1170


### PARR: Clonality Assay - When do I use it?

- Cytology can't accurately diagnose (Reactive vs Lymphoma)
- Small cell and intermediate Amplifies DNA sequences
- coding for variable region of: Positive for DNA
- T-cell receptor
- Immunoglobulin receptor in **B-cells**
- Reactive heterogeneity of B- and T-cell receptor
- Neoplastic same configuration – clonality



# What do I submit for PARR?

- Cytology slides (even stained)
- Needs enough lymphoid tissue
- 70-90% sensitivity
- Potential for false-negatives In NK lymphomas, with aberrant lymphoid receptors
- Potential for false-positives
  - Ehrlichia canis, Borrelia, Leishmania, histiocytomas, feline IBD (pseudoclonality), hepatitis from drug hypersensitivity ...



Results of histopathology, immunohistochemistry, and molecular clonality testing of small intestinal biopsy specimens from clinically healthy, client-owned cats Sina Marsilio, et.al. J Vet Intern Med. 2019;33:551-558

- 20 clinically healthy, client owned cat ( $\geq$  3 years of age)
- Gastric and duodenal biopsies (histopath., immuno. & clonality)
- Cats followed for development of chronic enteropathy (CE) (Median=709 days) (Range =219-869 days)
- 12 diagnosed as SCL; 1 diagnosed as emerging SCL
- 6 diagnosed with lymphocytic enteritis (1 with pseudoclonality)
- 3 cats eventually developed Chronic Eenteritis 2 were euthanized
- 17 cats remained healthy



ACVIM consensus statement guidelines on diagnosing and distinguishing low-grade neoplastic from inflammatory lymphocytic chronic enteropathies in cats, Sina Marsilio et.al, J Vet Intern Med, 2023;37:794–816

- Panel: (2 internists, 1 radiologist, 1 anatomic pathologist, 1 clonality expert, 1 oncologist)
- Evaluate current peer-reviewed publications and compile a consensus statement
- Most recommendations given by the panel were supported by a moderate or low level of evidence in the literature
- Several under-studied areas were identified
- Bottom-line: no single diagnostic criterion or biomarker reliably differentiates inflammation from lymphoid neoplasia in the intestinal tract of cats
- Diagnosis established by integrating all available clinical and diagnostic data
- Histopathology remains the main-stay for differentiation?

### SDMA: Potential Marker in Low Numbers of Cases

- Symmetric dimethylarginine
- Sensitive indicator for renal insufficiency
- Can be elevated in dogs and cats without concurrent elevations in BUN +/-Creatinine
- SDMA levels near 100 in some dogs and cats with lymphoma
  - All had normal BUN, low numbers had mildly elevated CR

# Received: 13 January 2022 Revised: 15 June 2022 Accepted: 15 June 2022 DOI: 10.1111/vco.12845 Interview Interview Interview

ORIGINAL ARTICLE

The association between symmetric dimethylarginine concentrations and various neoplasms in dogs and cats

Veterinary and Comparative Oncology WILEY

Michael J. Coyne 🧧 | Corie Drake | Donald J. McCrann | David Kincaid

#### 1803 dogs and cats with neoplasia

SDMA concentrations were significantly higher in dogs and cats with lymphoma (p < .0001) compared with non-tumor controls.

| Cancer type                      | N   | OR (95% CI)        | р              |
|----------------------------------|-----|--------------------|----------------|
| Canine lymphoma                  | 307 | 10.00 (5.98-16.72) | <i>p</i> <.001 |
| Feline lymphoma                  | 224 | 3.04 (1.95-4.73)   | <i>p</i> <.001 |
| Feline visceral mast cell tumour | 55  | 1.63 (0.67-3.92)   | p=.275         |
| Canine hemangiosarcoma           | 230 | 1.11 (0.66-1.87)   | <i>p</i> =.691 |
| Canine mammary carcinoma         | 387 | 0.49 (0.28-0.84)   | <i>p</i> =.009 |
| Canine mammary adenocarcinoma    | 388 | 0.41 (0.231-0.71)  | <i>p</i> =.001 |
| Canine lipoma                    | 212 | 0.39 (0.18-0.85)   | <i>p</i> =.013 |

RESEARCH ARTICLE PLOS ONE | https://doi.org/10.1371/journal.pone.0250839 May 14, 2021

Validation of protein arginine methyltransferase 5 (PRMT5) as a candidate therapeutic target in the spontaneous canine model of non-Hodgkin lymphoma

Shelby L. Sloan<sup>1,20</sup>, Kyle A. Renaldo<sup>30</sup>, Mackenzie Long<sup>1,2</sup>, Ji-Hyun Chung<sup>2</sup>, Lindsay E. Courtney<sup>3</sup>, Konstantin Shilo<sup>1</sup>, Youssef Youssef Youssef, Sarah Schlotter<sup>2</sup>, Fiona Brown<sup>2</sup>, Brett G. Klame<sup>2</sup>, Xiaoli Zhang<sup>3</sup>, Ayae S. Yilmaz<sup>4</sup>, Hatice G. Ozer<sup>6</sup>, Victor E. Vall<sup>61</sup>, Kris Vaddi<sup>1</sup>, Peggy Scherle<sup>7</sup>, Lapo Alinar<sup>2</sup>, William C. Kisseberth<sup>2,34</sup>\*, Robert A. Balocchl<sup>24</sup>\*

•42.4% of lymphomas positive for PRMT5
•PRMT5 inhibition → Cell death



# Feline Cytology Case Challenges

# Feline Cytology Case Challenges

Challenge?
How do I get down from here?



# "Herc" The Cat with Diarrhea

- Starts dressing in strange attire
- Sleeping in unusual places

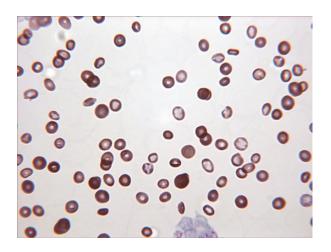
# "Herc" The Cat with Diarrhea

Starts dressing in strange attire
Sleeping in unusual places



### Differentials

### • DDx?


- Lymphoma
- Other neoplasms (Carcinoma if TD were Siamese)
- Lymphocytic / plasmacytic enteritis
- Infections / parasitic
- Dietary etc. etc.

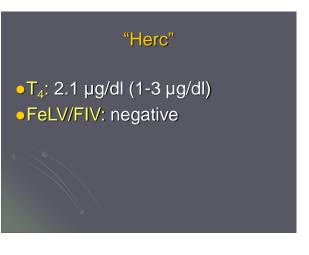
### • Plan?

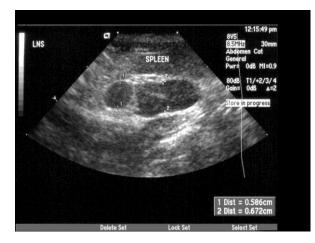
- MDB, CBC, Chem. Profile
- FeLV/FIV test
- Imaging of abdomen

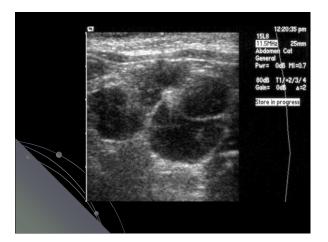
# **CBC** Values

| PCV   | 18%  | (30 - 45)       | • | WBC       | 6.83  | (5.5-19.0) |
|-------|------|-----------------|---|-----------|-------|------------|
| RBC   | 7.5  | (5–10.0)        | • | Bands     | 1.3   | (<.3)      |
| Hgb   | 4.9  | (9.8-15.4)      | • | Neuts     | 5.4   | (2.5-12.5) |
| MCH   | 9.0  | (13-17)         | • | Lymphs    | .08   | (1.5-7.0)  |
|       | 24   | (30-36 <b>)</b> | • | Monos     | .03   | (<.9)      |
|       | 20.1 | (39-55)         | • | Eos       | 0     | (<.8)      |
| • RDW | 24.1 | (17-22)         |   |           |       |            |
|       |      |                 | • | Platelets | (Adq) | (300-800)  |




# Interpretation


- Microcytic, hypochromic anemia
- Iron deficiency
- What causes a microcytic, hypochromic, iron deficiency anemia in cats?


# Interpretation

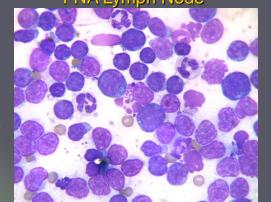
- Microcytic, hypochromic anemia
- Iron deficiency
- Reasons?
  - Chronic blood loss

| Biochemical Profile |      |           |     |  |  |
|---------------------|------|-----------|-----|--|--|
| BUN                 | 45   | ALT       | 98  |  |  |
| (19–34)             | Н    | (25–98)   |     |  |  |
| Creat               | 1.6  | AST       | 38  |  |  |
| (0.9-2.2)           |      | (7-38)    |     |  |  |
| Phos                | 3.9  | ALP       | 32  |  |  |
| (3.0-6.1)           |      | (0-45)    |     |  |  |
| Ca                  | 10.2 | Bili      | 0.1 |  |  |
| (8.7-11.7)          |      | (0-1.0)   |     |  |  |
| TCO <sub>2</sub>    | 17   | Alb       | 2.3 |  |  |
| (13-21)             |      | (2.8-3.9) | L   |  |  |








# Problems

- Iron deficiency anemia due to chronic blood loss
- Diarrhea
- Enlarged mesenteric lymph nodes
- Thickened intestinal wall
- DDx
  - IBD
  - Feline Gastrointestinal Eosinophilic Sclerosing Fibroplasia
  - Lymphoma
  - Other neoplasms

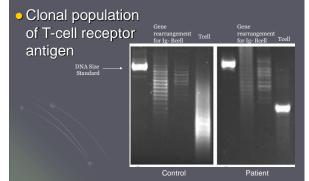
### "Herc"

- What do we do with them big lymph nodess?
  - Take them out?
  - Biopsy them?
  - •FNA?
  - Histopathology
- Immunophenotyping
  - PARR analysis
  - All of the above? Good luck with that!

### FNA Lymph Node



# Herc Results


- Cytological Diagnosis
   Reactive
  - lymphadenopathy
- So what do we do now?

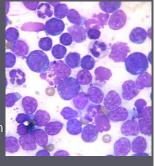
# Herc Results

### So what do we do now?

- PARR Analysis
- You already have the sample collected
- Relatively inexpensive
- 80% sensitivity; Higher specificity
- False negatives in very low numbers of lymphomas (NK cells)
- False positives in cats with IBD and pseudoclonality

### Herc PARR Results




# Plan for Herc?

- COP chemo
- Sucralfate/famotidine
- Iron supplementation
- SQ fluids
- Are we experiencing a blast transformation or high / intermediate grade ITL?

### **Chemo for Herc**

### COP chemotherapy

- Cyclophosphamide 300 mg/m<sup>2</sup>, PO, q3 wks
- Vincristine 0.5 mg/m<sup>2</sup> IV q1 wk
- Prednisolone 10 mg PO q24h X 1 wk; then 10 mg PO q48h



# Herc Follow-up

### • Follow-up:

- Started Tx on 10/14/23
- GI signs resolved; no other abnormalities
- Abdominal US on 12/29/23 WNL

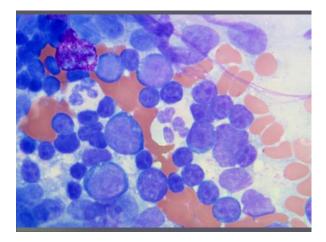
### "Small Cell" GI Lymphoma

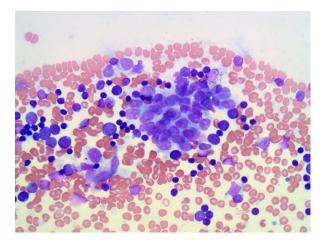
- Conservative Tx
  - Leukeran 20 mg/m<sup>2</sup>, PO, q/2 weeks
  - Prednisone 5-10 mg PO q48h
  - Vincristine 0.5 mg/m<sup>2</sup>, IV, q/2 weeks

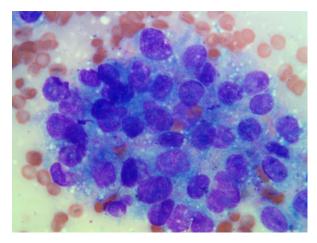
# Tabby Thompson

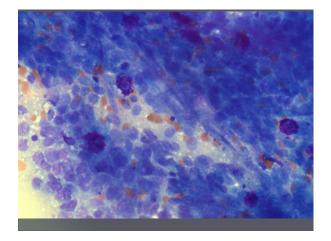
- 9 year old, F/S DSH
- Presented with complaint of listlessness, anorexia and rapid respiration
- Physical exam findings
  - Muffled heart and lung sounds
  - Cranial thorax not easily compressed

# Tabby Thompson


 Radiographs


 Very large mass in cranial mediastinum





# Tabby Thompson

- DDx for most common cranial mediastinal mass in the cat
  - Lymphoma
  - Thymoma
- Problems
  - Drastically different therapies
  - Both contain lymphocytes

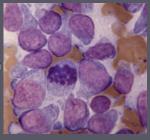








### Thymoma

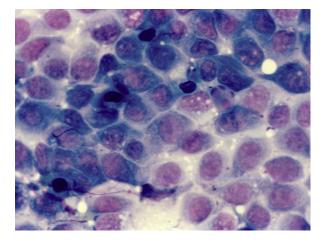

- Neoplasia of the epithelial cell population of the thymus
- Small lymphocytes predominate in most aspirates
- Low numbers of neoplastic epithelium are often seen
- Mast cells frequently observed in feline thymomas

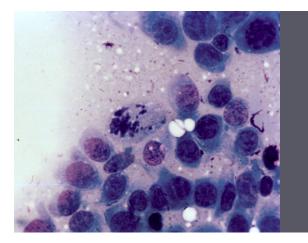
# Thymoma

- 60% in the cat are cystic
- Benign forms well encapsulated (80%)
- Malignant forms invasive
  - Rare to metastasize
  - Cytology incapable of distinguishing forms
- Paraneoplastic syndromes
  - Myasthenia (40% dogs, rare in cats)
  - Megasophagus and or aspiration pneumonia
  - Immune-mediated anemia, polymyositis
  - Dermatitis (reported in cats)

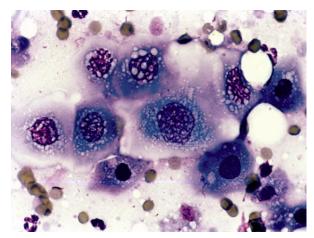
# Thymic Lymphoma

- Lymphocyte is the neoplastic cell population
- T-cell in origin
- Large blast cells with occasionally clefted nuclei
- Small cell thymic lymphoma
  - Never seen one





# Patient: Cricket

- 11 year old, male, DSH
- Presented for halitosis and decreased appetite
- Salivation
- PE or oral cavity
  - 1.5 cm, ulcerated mass on left side of the pharyngeal cavity
  - Possibly involving the tonsil


# Differentials

- Neoplasia
  - Squamous cell carcinoma
  - Lymphoma
  - Plasmacytoma
- Infection / inflammatory
  - Fungal (cryptococcus)
  - Sever stomatitis?
    - Eosinophilic, Lymph. / Plasma., pyogranulomatous
- Plan
- Anesthesia  $\rightarrow$  FNA







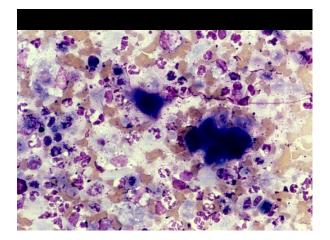


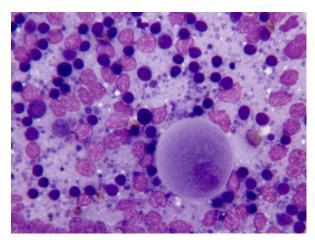
# Squamous Cell Carcinoma

- Most common malignant, epithelial tumor of the oral cavity
- Strong site predilection for different areas on the head
  - Palate, lip, cheek, gingiva, tongue and tonsil
  - Ears and nose
  - Also, digits

# Cytological Appearance of SCC

- Epithelial neoplasm with some degree of squamous differentiation
  - Angular cytoplasmic borders
  - Dysplasia with inappropriate keratinization
  - Small, perinuclear vacuoles
  - Some mature squamous cells
  - Loss of cohesion

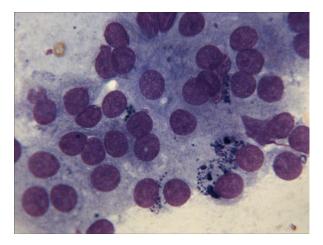

# **Biological Behavior of SCC**


- Site dependent and aggressive
- Most oral and cutaneous tumors are locally aggressive and invasive
  - Especially in the cat
- Metastasis typically later in course of disease
- Tumors located at base of tongue, tonsil of digits
  - May more readily met to regional lymph nodes

# Patient: Rascal

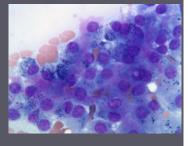
- 12 year old, M/C DSH
- Rapidly growing lesion on the nose








# Patient: Pounce


- Physical exam findings
  - Small, subcutaneous mass on right side of trachea, near thoracic inlet





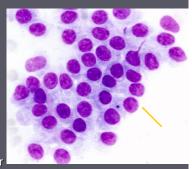
# **Thyroid Neoplasia**

- Typical neuroendocrine appearance of clumps of epithelium with few distinct cell borders
- Tyrosine granules
   Colloid



# **Biological Behavior (Feline)**

- Adenomas most common in cats, often bilateral
- Distinction between benign and malignant done histologically
  - Even adenocarcinomas do not typically have criteria of malignancy
  - Invasion in to capsule or surrounding tissues / lymphatics

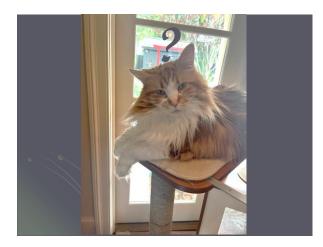

# **Biological Behavior**

- Most in cat are biologically active
- Hypersecretion of thyroid hormones
- Adenocarcinomas locally invasive
  - 40% to 70% have metastasis to regional lymph nodes



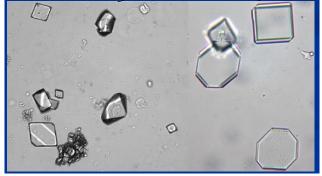
# Canine Thyroid Tumors

- Clinical presentation
  - Mass on ventral neck to thoracic inlet (intrathoracic)
- Breed predilection
- Boxers, beagles, golden retrievers
- >85% malignant
- Adenomas and adenocarcinomas cytologically similar




# **Biological Behavior**

- Usually not biochemically secretory
- Carcinomas locally invasive and will metastasize – Blood or Lymphatics
  - Tumors < 5cm in diameter • Potential for metastasis low
  - Tumors > 5cm in diameter
  - 40% chance of metastasis at time of Dx


DIC





# The Complete Urinalysis

Either Urine or UR-Out: The Complete Urinalysis with Images from a Fully Automated Analyzer



# **Urinalysis Procedure**

- Sample collection
- Chemical analysis
- Evaluation of urine sediment
   Ideally, should be
- performed within 2 hours after collection
- Refrigeration allows prolonged storage prior to analysis
  - Artifacts
  - Crystals
  - Cellular degeneration



# Urine Specific Gravity: Supernatant is best!



# **Urine Hemoprotein**

- Sormally negative
- Positive results
   Hemorrhage, hemoglobinuria myoglobinuria
- False negatives
   Patients on Captopril
- False positives
   Iatrogenic blood contamination
- Bleach & other disinfectants
- Positive on test pad but no red cells in sediment?



### Microscopic Evaluation of Urine Sediment

#### Wet mount

- Unstained drop of sediment with coverslip
- Look for crystals, casts and cells
- ${\color{black} { \bullet } }$  If cells are identified . . . .
- Solution Dry mount
  - For the active sediment: red blood cells, white blood cells and / or suspect bacteria
  - ø Diff Quik<sup>®</sup>



# **The Active Sediment**

#### Best visualized on stained preparation

- Detailed evaluation done on all urine with active sediment
- Make a "linear smear" preparation of pellet
- Air dry
- Stain with Diff Quik®



(https://www.idexxlearningcenter.com/mod/video/view.php?id=2036)

# The Linear Smear



# **IDEXX SediVue Dx**<sup>TM</sup>

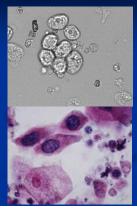
- Urine sediment analyzer
   IDEXX Laboratories, Inc.
- 165 μl unspun urine (4-5 drops)
- Sentle centrifugation (260 RCF)
- Provides 70 high quality digital images, equivalent to approximately 45 HPFs
- Quantitative and semiquantitative analysis using image evaluation software
- Results in approximately 3 min.

# 5.0 Neural Network Imaging

| Element<br>type | Parameter                               | Image<br>tag | Reported results |                     |                                   |          |           |         |
|-----------------|-----------------------------------------|--------------|------------------|---------------------|-----------------------------------|----------|-----------|---------|
| Blood cells     | WBC WBC None                            |              | <1/HPF           |                     |                                   |          | . 50/1105 |         |
| Blood cells     | RBC                                     | RBC          | detected         | < 1/HPF             | Quantitative numerical result/HPF |          |           | >50/HPF |
| Bacteria*       | Rods                                    | N/A†         | None             | Suspect             | Present                           |          |           |         |
| Bacteria        | Cocci                                   | IN/PC        | detected         | presence            | Present                           |          |           |         |
| Epithelial      | Squamous                                | sqEPI        | None             | <1/HPF              | 1-2/HPF                           | 3-5/HPF  | 6-10/HPF  | >10/HPF |
| cells           | Nonsquamous                             | nsEPI        | detected         |                     |                                   |          |           |         |
|                 | Hyaline                                 | HYA          | None<br>detected |                     | >1/LPF                            |          |           |         |
| Casts           | Nonhyaline<br>(e.g., granular,<br>waxy) | nhCST        |                  | Suspect<br>presence |                                   |          |           |         |
| Crystals        | Unclassified<br>(all other<br>crystals) | CRY          | None<br>detected | <1/HPF              | 1-5/HPF                           | 6-20/HPF | 21-50/HPF | >50/HPF |
|                 | Calcium<br>oxalate<br>dihydrate         | CaOxDi       |                  |                     |                                   |          |           |         |
|                 | Struvites                               | STR          |                  |                     |                                   |          |           |         |
|                 | Ammonium<br>biurate                     | AmmBi        |                  |                     |                                   |          |           |         |
|                 | Bilirubin                               | BILI         |                  |                     |                                   |          |           |         |

# **Epithelial Cells**

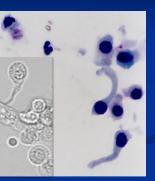
- Squamous cells
- Son-squamous cells
  - Transitional epithelium
  - Gaudate epithelium
  - & Renal tubular epithelium


# **Squamous Cells**

- Large, flat cells with angular sides and small nuclei
- Distal urethra, vagina or prepuce
- Lower urinary tract contamination



# **Non-Squamous**


- Transitional epithelium
  - Round to pear-shaped
  - Variable size and shape
  - Higher N:C ratio
  - Ureter, urinary
     bladder and proximal
     2/3 of urethra & ureter



# **Non-Squamous**

### Caudate epithelium

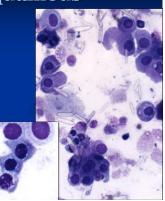
- Spindle or tadpole-shaped cells
- Renal pelvis
- Not normally seen in sediment
  - Pyelonephritis
  - Salculi



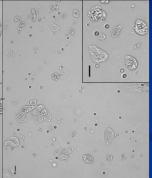
### **Non-Squamous**

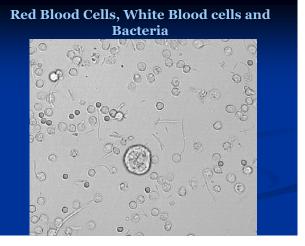
### Renal tubular

### epithelium

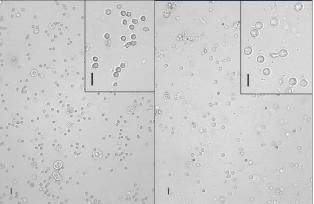

- Small round to rectangular cells
- Vacuoles in the cat
- Originate from
- renal parenchyma Indicate renal
- damage / inflammation

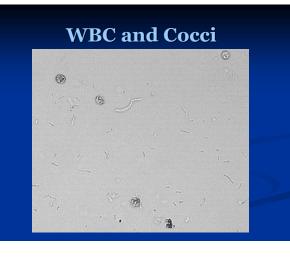



# Non-Squamous

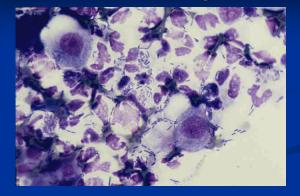

### Senal tubular epithelium

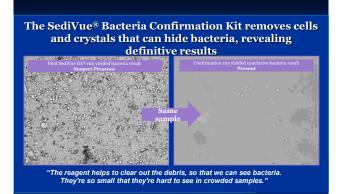
- Small round to rectangular cells
- Vacuoles in the cat
- Originate from renal parenchyma
- Indicate renal damage / inflammation





# Squamous and Nonsquamous










**Air-Dried Diff Quik** 





Removing common "clutter" prevents SediVue Dx® from "suspecting" bacteria is present when truly negative



Image from initial sample run: crystalline debris clutters the sample making the result inconclusive

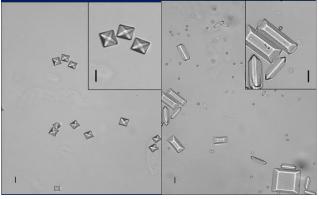
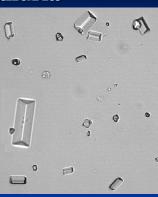


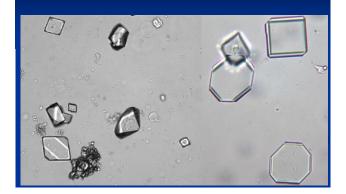

Image from second run is decluttered and the result is clearly negative for bacteria

# Crystalluria

- SediVue will report
  - CaOxDi
  - Struvite (magnesium, ammonium phosphate: MAP)
  - Ammonium biurate
  - Bilirubin
  - Unclassified crystals


# CaOxDi & Struvite




# Crystalluria

### Magnesium ammonium phosphate (MAP, Struvite)

- Variably shaped, 3 dimensional rectangular prisms
- Coffin lids
- Alkaline urine Secondary to UTI (dogs)
- Sterile cystitis (cats)
- Refrigerated samples



# **Atypical Struvites**



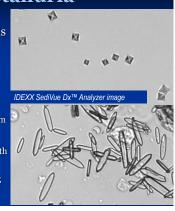
# Crystalluria

### Sector Amorphous phosphate

- Colorless, amorphous debris
- Small spheroids
- Seen in alkaline urine
- Commonly found in clinically normal animals



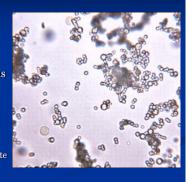
# Crystalluria


Calcium oxalate crystals

### S Two forms

- a Dihydrate form
  - Envelope-shaped Can be normal

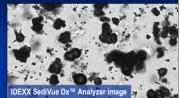
  - Ear be norman Ingestion of oxalate containing plants Refrigerated samples or prolonged storage at room temperature
- Monohydrate form Elongated, flat crystal with pointed ends

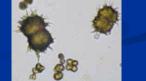

  - Seen in acute cases of ethylene glycol poisoning



# Crystalluria

#### Urates


- Amorphous ground material
   Small spheroids
- Flat prisms of various geometrical shapes
- Seen in acidic urine
- Predisposed breeds
  - Dalmatian
  - English bulldogs
  - Predisposition to urate
  - urolithiasis




# Crystalluria

### Ammonium biurate

- Golden to brown
   Spherical with irregular
- protrusions Smooth aggregates of spheroids (cats)
- Severe hepatic disease
  - Portovascular malformations





# Crystalluria

0

0

0

00

IDEXX SediVue Dx™ Analyzer in

### 🛭 Bilirubin

- Orange to reddishbrown granules or needle-like crystals
- Disorder in bilirubin metabolism
  - Liver disease
     (hepatic or posthepatic)
  - hepatic) Extravascular hemolysis



# Crystalluria

### Cystine

000

00

000

nade

- Colorless, flat hexagons
- Unequal sides
- Always abnormal
- Inherited defect in tubular transport of cystine
- Breed predisposition
  - Males
  - Dachshunds
     English bulldogs
  - Siamese cats
  - American Bully
  - American bully



# Casts

- Recorded as number per LPF
- Sest visualized on unstained preparation
- Typically an early indicator of renal tubular disease
  - Hyaline casts

### Casts

### Se Hyaline casts

- Tamm-Horsfall mucoprotein precipitates
- Colorless tubular structures
- Low numbers are insignificant
  - Exercise
  - Support States State


# Casts

- Epithelial (cellular) casts
  - Round to polygonal epithelial cells in tubular arrangement
  - Nephritis / pyelonephritis
  - Undergo degeneration to produce granular casts



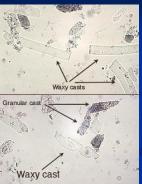
# Casts

- Epithelial (cellular) casts
  - Round to polygonal epithelial cells in tubular arrangement
  - Nephritis / pyelonephritis
  - Undergo degeneration to produce granular casts



# Casts

### Schemen Granular Casts


- Seen when epithelial casts begin to degenerate
- Coarse granular casts
  - Fine granular casts
     Waxy casts



### Casts

### Granular casts

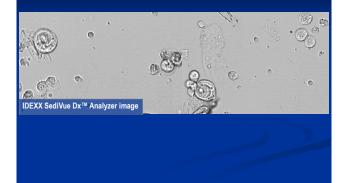
- Seen when epithelial casts begin to degenerate
- Coarse granular casts
   Fine granular casts
   Waxy casts



# **Bladder Neoplasia**

- So Difficult to diagnose from urine sediment
  - Atypical transitional epithelium
  - Lack of inflammation
- Imaging required to visualize mass
  - Tissue sampling to confirm

SFNA?

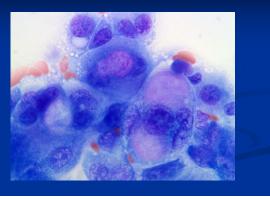

- Traumatic catheterization
- Cystoscopic biopsy

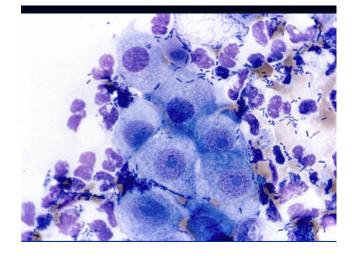
# **Transitional Cell Carcinoma**

- 90% of bladder tumors
- Middle-age to older dogs
  - Our Commonly Cats
- Atypical transitional cells
  - Absence of inflammation



# IDEXX SediVue TM





# **Transitional Cell Carcinoma**

- Ultrasound-guided FNA and T. C.
- Visualization of mass
- More representative of lesion
- Seeding of tumor cells



# **Transitional Cell Carcinoma**





